
DexYCB: A Benchmark for Capturing Hand Grasping of Objects
Supplementary Material

Yu-Wei Chao1 Wei Yang1 Yu Xiang1 Pavlo Molchanov1 Ankur Handa1 Jonathan Tremblay1

Yashraj S. Narang1 Karl Van Wyk1 Umar Iqbal1 Stan Birchfield1 Jan Kautz1 Dieter Fox1,2

1NVIDIA, 2University of Washington
{ychao,weiy,yux,pmolchanov,ahanda,jtremblay,ynarang,kvanwyk,uiqbal,sbirchfield,jkautz,dieterf}@nvidia.com

Contents

A. Constructing DexYCB 1
A.1. Optimizing Edepth 1

B. Properties of DexYCB 2
B.1. Visualization 2
B.2. Analysis on 3D Annotation Accuracy 2
B.3. Diversity of Hand Pose 2
B.4. Why Black Background? 3
B.5. Why Generalize Better over HO-3D? 3

C. Benchmarking Representative Approaches 3
C.1. Setup Details 3
C.2. Qualitative: 2D Object and Keypoint Detection 4
C.3. Qualitative: 6D Object Pose Estimation . . . 4
C.4. Qualitative: 3D Hand Pose Estimation 4
C.5. Full Quantitative: 6D Object Pose Estimation 4

D. Safe Human-to-Robot Object Handover 4
D.1. Pre-Generated Grasps 4
D.2. Additional Qualitative Results 4
D.3. Full Quantitative Results 4

E. Results on In-the-Wild Images 6

A. Constructing DexYCB
A.1. Optimizing Edepth

Here we provide the details on optimizing the depth term
Edepth in solving 3D hand and object pose (Sec. 2.3 of the
main paper). Below we first describe our efficient forward
computation based on a point-parallel GPU implementa-
tion. Then we show that Edepth is differentiable and derive
its gradient.

Recall that {di ∈ R3}ND
i=1 denotes the entire point cloud

where di is a single 3D point, andM(P) is the triangular
mesh of our model. Without loss of generality, we assume

that our model contains only one single rigid object, i.e.
P ∈ SE(3). Recall that the depth term is defined as

Edepth(P) =
1

ND

ND∑
i=1

|SDF(di,M(P))|2, (1)

where SDF(·) calculates the signed distance value of a 3D
point d from the meshM. One naive way to compute this
value is to exhaustively compute the distance from the query
point d to all the triangular faces on the mesh, and find
the minimum value among them. To perform a more ef-
ficient computation, we leverage the bounding volume hi-
erarchy (BVH) technique from graphics. Specifically, we
build an axis-aligned bounding box tree (AABB tree) to
index the triangular faces of the mesh at the start of each
forward computation of Eq. 1. The AABB tree allows us
to efficiently traverse the triangular faces of the mesh and
compute distances from the query d without going through
all the faces exhaustively. Furthermore, since Eq. 1 repeats
the same computation for all the query points {di}, we can
achieve further speedup by parallelizing over query points
using a GPU implementation.

Now let us turn to the backward pass of Eq. 1, since we
optimize Edepth(P) using a gradient-based method. During
the forward computation, for a query point d, once we find
its closest point q ∈ R3 on the mesh, we represent q using
barycentric coordinates:

q = u · a+ v · b+ w · c, (2)

where a, b, c ∈ R3 denotes the three vertices of the tri-
angular face which q lies on, and u, v, w ∈ R with 0 ≤
u, v, w ≤ 1 and u+ v +w = 1. Now we can further repre-
sent Edepth(P) with

Edepth(P) =
1

ND

ND∑
i=1

|SDF(di,M(P))|2

=
1

ND

ND∑
i=1

||di − qi||22.

(3)

1

thumb tip index tip middle tip ring tip pinky tip
4.27 ± 3.42 4.99 ± 3.67 4.33 ± 3.53 4.03 ± 3.56 3.90 ± 3.45

Table 1: Reprojection error (pixels) of the five finger tips.

We can thus derive the gradient as

∂Edepth(P)

∂P
=

1

ND

ND∑
i=1

∂||di − qi||22
∂P

. (4)

Let Vn = (Vn,x,Vn,y,Vn,z) ∈ R3 denote the nth vertex
of the meshM with NV vertices. Using the multivariable
chain rule, we get

∂||d− q||22
∂P

=

NV∑
n=1

∑
m∈{x,y,z}

∂||d− q||22
∂Vn,m

· ∂Vn,m
∂P

. (5)

With the barycentric representation of q from Eq.2, we can
write

||d− q||22 = ||d− (u · a+ v · b+ w · c)||22
= (dx − u · ax − v · bx − w · cx)2

+ (dy − u · ay − v · by − w · cy)2

+ (dz − u · az − v · bz − w · cz)2.

(6)

Finally, with Eq. 5 and 6, we can derive the gradient with
respect to the vertices as

∂||d− q||22
∂Vn,m

=

−2 · u · (dx − u · ax − v · bx − w · cx) if Vn,m = ax,

−2 · u · (dy − u · ay − v · by − w · cy) if Vn,m = ay,

−2 · u · (dz − u · az − v · bz − w · cz) if Vn,m = az,

−2 · v · (dx − u · ax − v · bx − w · cx) if Vn,m = bx,

−2 · v · (dy − u · ay − v · by − w · cy) if Vn,m = by,

−2 · v · (dz − u · az − v · bz − w · cz) if Vn,m = bz,

−2 · w · (dx − u · ax − v · bx − w · cx) if Vn,m = cx,

−2 · w · (dy − u · ay − v · by − w · cy) if Vn,m = cy,

−2 · w · (dz − u · az − v · bz − w · cz) if Vn,m = cz,

0 otherwise.
(7)

Since we can also compute ∂Vn,m/∂P for rigid objects in
Eq. 5, we can obtain the gradient of Edepth(P). In fact, we
can compute the gradient of Edepth(P) as long as Vn,m(P)
is differentiable. This holds true for the YCB objects (rigid)
and also the MANO hand model (deformable). Therefore
we can optimize Eq. 1 with both our object and hand mod-
els. Similar to the forward computation, the backward pass
can also be parallelized using a GPU implementation.

Figure 1: Qualitative examples of annotations with high repro-
jection errors.

B. Properties of DexYCB

B.1. Visualization

For a better visualization of data and annotations please
see the supplementary video.

B.2. Analysis on 3D Annotation Accuracy

To analyze the accuracy of 3D annotation in DexYCB,
we compute the reprojection error of ground-truth 3D key-
points with human labeled 2D keypoints in each image.
Tab. 1 reports the reprojection errors of the five finger tips.
The mean errors are all below 5 pixels. As shown in Fig. 1,
the large errors are often produced by a fast moving hand
(top) and occasionally ambiguous annotations (bottom: ring
labeled as pinky).

B.3. Diversity of Hand Pose

DexYCB pushes prior hand datasets to an unprecedented
scale on the diversity of grasps. To analyze the diversity of
hand pose, we extract the PCA representation of the MANO
hand model for each hand pose and visualize the distri-
bution in 2D space using the first two PCA coefficients.
Fig. 2 compares the distribution of hand pose in DexYCB
with HO-3D [3]. While DexYCB grows the number of ob-
jects as well as the number of grasps per object over prior
datasets, the main edge actually lies in the diversity of cap-
tured grasps as shown by the distribution of hand pose. This
diversity marks an essential challenge of pose estimation in
hand-object interactions and downstream applications like
object handover to robots.

2

#sub #obj #view #seq #image
#obj anno #hand anno

all grasped 6D eval
handover

all right left
eval

all 10 20 8 1,000 581,968 2,317,312 581,968 – – 508,384 254,000 254,384

S0 (default)
train 10 20 8 800 465,504 1,846,144 465,504 – – 406,888 203,096 203,792
val 2 20 8 40 23,200 97,456 23,200 – – 22,728 11,296 11,432
test 8 20 8 160 93,264 373,712 93,264 94,816 1,280 78,768 39,608 39,160

S1 (unseen subjects)
train 7 20 8 700 407,088 1,620,128 407,088 – – 356,600 177,656 178,944
val 1 20 8 100 58,592 226,288 58,592 – – 47,656 23,848 23,808
test 2 20 8 200 116,288 470,896 116,288 119,192 1,600 104,128 52,496 51,632

S2 (unseen views)
train 10 20 6 750 436,476 1,737,984 436,476 – – 381,288 190,500 190,788
val 10 20 1 125 72,746 289,664 72,746 – – 63,548 31,750 31,798
test 10 20 1 125 72,746 289,664 72,746 73,383 1,000 63,548 31,750 31,798

S3 (unseen grasping)
train 10 15 8 750 436,416 1,742,672 436,416 – – 381,288 189,712 191,576
val 10 2 8 100 58,192 221,664 58,192 – – 50,736 25,864 24,872
test 10 3 8 150 87,360 352,976 87,360 89,392 1,200 76,360 38,424 37,936

Table 2: Statistics of the four evaluation setups: S0 (default), S1 (unseen subjects), S2 (unseen views), and S3 (unseen grasping).

3 2 1 0 1 2

3

2

1

0

1

2

3

HO­3D
Ours

Figure 2: Distribution of hand pose represented by the first two
MANO PCA coefficients.

B.4. Why Black Background?

The main focus of DexYCB is on the diversity of grasps,
not the diversity of backgrounds. Capturing hand-object in-
teraction is challenging already in controlled settings. Be-
sides, DexYCB is no lesser than prior datasets in this re-
spect: FreiHAND [11] used a green background; while HO-
3D [3] used more natural backgrounds, the diversity is not
much better since the choice of background scenes in HO-
3D is still only two (Fig. 3).

B.5. Why Generalize Better over HO-3D?

Following B.3 and B.4, DexYCB generalizes better due
to a better diversity of grasps given a similar diversity of
scene background. This explains the edge of DexYCB in

Figure 3: The two captured scene backgrounds (top and bottom)
in HO-3D [3].

the cross-dataset evaluation in Sec. 4 of the main paper.

C. Benchmarking Representative Approaches
C.1. Setup Details

Tab. 2 shows the statistics of the four evaluation setups:
S0 (default), S1 (unseen subjects), S2 (unseen views), and
S3 (unseen grasping). The first row (all) represents the full
dataset, and each sub-table below shows the statistics of
one particular setup, divided into train/val/test splits. For
each split, we list the number of subjects (“#sub”), objects
(“#obj”), views (“#view”), sequences (“#seq”), and image
samples (“#image”).

We also list the number of object annotations (“#obj
anno”) in each split, including the full object set (“all”)
and the subset with only the grasped objects (“grasped”).
For 6D object pose estimation, we follow the BOP chal-

3

lenge to speed up the evaluation by evaluating on subsam-
pled keyframes. We use a subsampling factor of 4. The
column “6D eval” lists the number of object annotations in
the keyframes of the test split. For object handover, the
test images need to capture a person with an object in hand
ready for handover. Therefore we use the last frame of each
video as the test samples, since during capture the subjects
are instructed to hand over the object to someone across at
the end. The column “handover eval” lists the number of
in-hand object annotations (which is also the number of the
last frames from all videos since each image contains one
in-hand object) in the test split for the handover evaluation.

Finally, we list the number of hand annotations (“#hand
anno”) in each split, including the full hand set (“all”) and
the subsets with only right (“right”) and left (“left”) hands.

C.2. Qualitative: 2D Object and Keypoint Detec-
tion

Fig. 6 shows qualitative results of 2D object detec-
tion and keypoint detection with Mask R-CNN (Detec-
tron2) [4, 9] on the S0 setup. We highlight some failure
examples in the last two rows. In many failure cases we
see false object detections due to occlusions either by other
objects (e.g., “036 wood block” in row 5 and column 2) or
by hand interaction (e.g., “021 bleach cleanser” in row 6
and column 1). We also see inaccurately detected hand key-
points when the hand is interacting with objects (e.g., row 6
and column 4).

C.3. Qualitative: 6D Object Pose Estimation

Fig. 7 shows qualitative results of 6D object pose esti-
mation on the S1 setup. The first row shows the input RGB
images and the following rows show the estimated pose
from each representative approach. We render object mod-
els given the estimated poses and overlay them on top of a
darkened input image. We can see the challenge when the
object is severely occluded by the hand (e.g., the leftmost
example of PoseCNN [10] (RGB)). We also see that refine-
ment based approaches like DeepIM [6] and CosyPose [5]
are able to improve upon their coarse estimate input (i.e.,
PoseCNN (RGB)) and generate more accurate final predic-
tions (e.g., the second-left example of DeepIM (RGB)).

C.4. Qualitative: 3D Hand Pose Estimation

Fig. 8 shows qualitative results of 3D hand pose estima-
tion using Spurr et al.’s method [8] (HRNet32) on the S0
setup. The method is able to generate sensible articulated
pose even under object occlusions. This is consistent with
the quantitative results reported in Tab. 7 of the main pa-
per, where the mean per joint position error after Procrustes
alignment is less than 1cm (6.83mm). As suggested in that
table, the major source of error comes from translation, ro-
tate, and scale (Absolute), rather than articulation. Nonethe-

less, we still see errors in local articulation when objects are
in close contact (e.g., the middle finger in row 2 and column
1) and when the fingers are largely occluded by the held ob-
ject (e.g., the index finger in row 6 and column 4).

C.5. Full Quantitative: 6D Object Pose Estimation

For 6D object pose estimation, since in the main paper
(Tab. 4) we report benchmark results only on S1, we now
include the results on the other three setups. Tab. 3, 4, and
5 show the results in AR on S0, S2, and S3, respectively.
Overall, we observe a similar trend as on S1 (see Sec. 5.3
of the main paper), where DeepIM (RGB-D) [6] and Cosy-
Pose [5] are the two most competitive approaches in esti-
mation accuracy.

D. Safe Human-to-Robot Object Handover
D.1. Pre-Generated Grasps

Fig. 9 visualizes the 100 grasps for each object used in
our evaluation. These grasps are sampled from the pre-
generated grasps for YCB objects in [2]. Note that here we
only show the grasps for 18 out of 20 objects in DexYCB,
since the remaining two objects (“002 master chef can”
and “036 wood block”) do not have any feasible grasps us-
ing the gripper of choice (i.e., Franka Panda).

D.2. Additional Qualitative Results

Fig. 10 shows additional qualitative results of the pre-
dicted grasps for human-to-robot object handover. Interest-
ingly, larger objects like “003 cracker box” (row 1 and col-
umn 1) are less tolerant to errors in pose estimation, since
most successful grasps requires the gripper to be fully open
and barely fitting the object. Therefore a slight error in the
estimated pose will cause the gripper to collide with the ob-
ject. At the same time, errors in object pose estimation may
cause the gripper to miss the grasp especially on smaller
objects (e.g., gray grasps for “037 scissors” in row 4 and
column 3). On the other hand, a hand that is miss or par-
tially detected due to occlusion may cause a potential pinch
by the gripper (e.g., red grasps for “061 foam brick” in row
5 and column 3).

D.3. Full Quantitative Results

Since in the main paper (Fig. 4) we show the results of
grasp generation only on S1, we now include the results on
the other three setups. Fig. 4 shows the precision-coverage
curves on S0, S2, and S3, respectively. Overall, similar to
on S1, we can see that more accurate object pose estimation
leads to better performance in grasp generation.

It is worth noting that although both DeepIM (RGB-
D) [6] and CosyPose [5] achieved very close performance
on 6D object pose (e.g. 57.54 versus 57.43 AR in Tab. 4
of the main paper), the later performs significantly better

4

S0 (default)
PoseCNN [10] DeepIM [6] PoseRBPF [1] CosyPose [5]

RGB + depth ref RGB RGB-D RGB RGB-D RGB
002 master chef can 47.47 51.04 63.53 71.69 36.70 55.23 78.97
003 cracker box 61.04 64.44 79.82 86.53 48.54 68.47 88.74
004 sugar box 45.11 49.90 59.30 70.98 34.44 58.95 78.45
005 tomato soup can 36.68 46.23 52.84 61.28 29.54 42.60 57.89
006 mustard bottle 52.56 56.10 60.92 71.00 33.86 59.20 71.57
007 tuna fish can 32.70 36.37 39.78 46.81 19.14 35.03 46.31
008 pudding box 44.24 51.72 56.55 68.26 29.64 52.34 68.52
009 gelatin box 46.62 56.15 62.49 72.60 32.08 49.88 70.38
010 potted meat can 37.41 43.42 55.48 63.33 32.98 44.39 59.23
011 banana 38.33 42.41 46.47 53.30 22.53 42.96 38.01
019 pitcher base 53.49 56.39 60.01 71.27 18.66 59.32 55.43
021 bleach cleanser 49.41 54.87 59.13 71.73 32.03 60.40 68.80
024 bowl 57.42 58.90 63.92 73.15 34.35 61.07 77.12
025 mug 40.68 43.52 49.17 58.27 21.88 37.69 54.70
035 power drill 47.93 51.59 62.10 72.30 37.54 58.86 52.02
036 wood block 40.11 46.76 51.77 68.28 25.29 53.23 68.46
037 scissors 21.93 24.11 27.57 33.59 22.32 32.31 23.82
040 large marker 35.09 42.49 35.35 49.04 25.05 36.03 53.61
052 extra large clamp 30.48 34.75 39.94 49.96 22.07 36.74 52.18
061 foam brick 12.80 15.96 17.50 25.82 18.33 35.10 34.34
all 41.65 46.40 52.25 62.03 28.90 49.09 59.99

Table 3: 6D object pose estimation results of representative approaches in AR (%) on S0.

S2 (unseen views)
PoseCNN [10] DeepIM [6] PoseRBPF [1] CosyPose [5]

RGB + depth ref RGB RGB-D RGB RGB-D RGB
002 master chef can 51.36 57.42 68.86 72.87 37.64 63.04 81.94
003 cracker box 60.65 67.45 84.10 89.34 54.25 74.63 90.66
004 sugar box 51.73 60.06 69.68 76.23 47.15 71.17 83.11
005 tomato soup can 45.44 52.56 55.36 65.60 32.62 47.60 61.52
006 mustard bottle 51.96 58.77 64.04 71.64 40.81 65.02 73.55
007 tuna fish can 31.96 39.20 44.21 51.25 26.09 44.43 55.65
008 pudding box 50.81 61.41 64.94 73.88 36.66 62.11 77.75
009 gelatin box 44.38 52.93 59.64 70.02 37.51 47.61 72.51
010 potted meat can 45.08 54.94 66.58 70.41 40.13 51.26 68.60
011 banana 44.42 49.09 48.16 58.30 24.85 49.07 42.50
019 pitcher base 53.51 56.73 61.36 71.98 26.37 62.30 56.77
021 bleach cleanser 56.03 62.24 66.20 76.89 38.13 67.77 73.86
024 bowl 58.15 62.15 67.75 72.60 40.76 70.66 80.42
025 mug 43.70 46.79 52.47 58.65 26.81 48.77 59.09
035 power drill 50.79 57.14 68.25 75.54 40.00 60.70 54.66
036 wood block 49.50 57.34 57.19 75.54 33.19 60.41 72.40
037 scissors 25.90 28.21 31.42 36.68 27.86 39.38 26.90
040 large marker 38.19 48.47 38.21 56.44 27.65 35.72 58.60
052 extra large clamp 34.42 40.21 42.24 52.72 28.25 46.33 58.73
061 foam brick 15.75 19.11 20.10 28.39 26.19 40.90 31.58
all 45.18 51.61 56.54 65.25 34.65 55.44 64.04

Table 4: 6D object pose estimation results of representative approaches in AR (%) on S2.

on grasp generation (e.g. see Fig. 4 of the main paper).
This is because that DeepIM (RGB-D) maintains a compet-
itive average recall by only outperforming CosyPose on a
smaller set of objects (e.g. 7 on S1) but with larger margins,

whereas CosyPose shows an edge over DeepIM (RGB-D)
on more objects (e.g. 13 on S1). This shows that a higher
performance on 6D pose metrics like AR does not nec-
essarily translate to a higher performance on downstream

5

S3 (unseen grasping)
PoseCNN [10] DeepIM [6] PoseRBPF [1] CosyPose [5]

RGB + depth ref RGB RGB-D RGB RGB-D RGB
002 master chef can – – – – – – –
003 cracker box – – – – – – –
004 sugar box – – – – – – –
005 tomato soup can – – – – – – –
006 mustard bottle – – – – – – –
007 tuna fish can – – – – – – –
008 pudding box – – – – – – –
009 gelatin box 33.07 43.43 47.68 54.13 29.95 47.71 58.29
010 potted meat can – – – – – – –
011 banana – – – – – – –
019 pitcher base – – – – – – –
021 bleach cleanser 38.52 45.32 48.32 60.18 25.35 58.31 63.04
024 bowl – – – – – – –
025 mug – – – – – – –
035 power drill – – – – – – –
036 wood block 40.53 48.17 50.54 65.74 27.30 55.19 65.31
037 scissors – – – – – – –
040 large marker – – – – – – –
052 extra large clamp – – – – – – –
061 foam brick – – – – – – –
all 37.41 45.66 48.86 60.07 27.52 53.78 62.25

Table 5: 6D object pose estimation results of representative approaches in AR (%) on S3.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Coverage

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ec

isi
on

PoseCNN RGB
PoseCNN + Depth
DeepIM RGB
DeepIM RGB-D
PoseRBPF RGB
PoseRBPF RGB-D
CosyPose RGB

S0 (default)

0.0 0.1 0.2 0.3 0.4
Coverage

0.0

0.1

0.2

0.3

0.4

Pr
ec

isi
on

PoseCNN RGB
PoseCNN + Depth
DeepIM RGB
DeepIM RGB-D
PoseRBPF RGB
PoseRBPF RGB-D
CosyPose RGB

S2 (unseen views)

0.0 0.1 0.2 0.3 0.4 0.5
Coverage

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ec

isi
on

PoseCNN RGB
PoseCNN + Depth
DeepIM RGB
DeepIM RGB-D
PoseRBPF RGB
PoseRBPF RGB-D
CosyPose RGB

S3 (unseen grasping)

Figure 4: Precision-coverage curves for grasp generation on S0, S2, and S3.

robotics tasks like object handover.

E. Results on In-the-Wild Images
Since DexYCB was captured in a controlled lab envi-

ronment with a constant background, models trained on the
RGB images of DexYCB are not expected to generalize
well to in-the-wild images. We tested a DexYCB-trained
model on COCO images [7] and observed an expected drop
in performance. Fig. 5 shows qualitative examples of 2D
hand and keypoint detection. We can see that the detec-
tor frequently produces false positives (top left), false neg-
atives (top middle), and inaccurate keypoint detection (top
right). Combining DexYCB with other in-the-wild datasets
for training will be an interesting follow up work.

References

[1] Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, Timo-
thy Bretl, and Dieter Fox. PoseRBPF: A Rao-Blackwellized
particle filter for 6D object pose estimation. In RSS, 2019. 5,
6, 9

[2] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. A
billion ways to grasps: An evaluation of grasp sampling
schemes on a dense, physics-based grasp data set. In ISRR,
2019. 4

[3] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. HOnnotate: A method for 3D annotation of
hand and object poses. In CVPR, 2020. 2, 3

[4] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 4, 8

6

Figure 5: Samples of 2D hand and keypoint detection on COCO.

[5] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. CosyPose: Consistent multi-view multi-object 6D
pose estimation. In ECCV, 2020. 4, 5, 6, 9

[6] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.
DeepIM: Deep iterative matching for 6D pose estimation. In
ECCV, 2018. 4, 5, 6, 9

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCV, 2014. 6

[8] Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Otmar Hilliges,
and Jan Kautz. Weakly supervised 3D hand pose estimation
via biomechanical constraints. In ECCV, 2020. 4, 10

[9] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 4, 8

[10] Yu Xiang, Tanner Schmidt, Venkatraman Nafurayanan, and
Dieter Fox. PoseCNN: A convolutional neural network for
6D object pose estimation in cluttered scenes. In RSS, 2018.
4, 5, 6, 9

[11] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max J. Argus, and Thomas Brox. FreiHAND: A
dataset for markerless capture of hand pose and shape from
single RGB images. In ICCV, 2019. 3

7

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

Figure 6: Qualitative results of 2D object and keypoint detection with Mask R-CNN (Detectron2)) [4, 9]. The last two rows highlight
failure examples.

8

Input RGB

PoseCNN [10]
RGB

PoseCNN [10]
+ depth ref

DeepIM [6]
RGB

DeepIM [6]
RGB-D

PoseRBPF [1]
RGB

PoseRBPF [1]
RGB-D

CosyPose [5]
RGB

Figure 7: Qualitative results of 6D object pose estimation. We render object models given the estimated poses on a darkened input image.

9

Figure 8: Qualitative results of the predicted 3D hand pose using Spurr et al.’s method [8] (HRNet32). For each image we visualize 3D
pose from both front and side views.

10

Figure 9: The 100 pre-generated grasps for each object.

11

Figure 10: Additional qualitative results of the predicted grasps. Green ones denote those covering successful grasps, red ones denote
those collided with the object or hand, and gray ones are failures not covering any successful grasps in the reference set. Predicted object
poses are visualized by textured models and hand segmentations are highlighted by blue masks. Ground-truth objects and hands are shown
in translucent white and brown meshes.

12

